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Summary 
 
     A research program is underway to develop strain rate dependent deformation and 
failure models for the analysis of polymer matrix composites subject to high strain rate 
impact loads.  Under these types of loading conditions, the material response can be 
highly strain rate dependent and nonlinear.  State variable constitutive equations based on 
a viscoplasticity approach have been developed to model the deformation of the polymer 
matrix.  The constitutive equations are then combined with a mechanics of materials 
based micromechanics model which utilizes fiber substructuring to predict the effective 
mechanical and thermal response of the composite.  To verify the analytical model, 
tensile stress-strain curves are predicted for a representative composite over strain rates 
ranging from around 1×10–5/sec to approximately 400/sec.  The analytical predictions 
compare favorably to experimentally obtained values both qualitatively and 
quantitatively.  Effective elastic and thermal constants are predicted for another 
composite, and compared to finite element results. 
 
Introduction 
 
     NASA Glenn Research Center has an ongoing research program to investigate the 
feasibility of developing jet engine fan containment systems composed of polymer matrix 
composite materials.  To design such a system, the ability to correctly predict the 
nonlinear, strain rate dependent deformation and failure of the composite under high 
strain rate loading conditions is required.  The deformation of polymer composites is 
ordinarily assumed to be independent of strain rate and linearly elastic [1].  However, 
researchers such as Daniel, et. al [2] and Staab and Gilat [3] have shown experimentally 
that the elastic properties of polymer matrix composites do indeed vary with strain rate.  
Furthermore, for applications such as a fan containment system, composites with 
toughened polymer matrices are likely to be used, which could contribute to a nonlinear 
deformation behavior for the composite.  Researchers such as Thiruppukuzhi and Sun [4] 
have analyzed the nonlinear deformation of polymer matrix composites on the 
macroscopic level using plasticity and viscoplasticity theory.  Previous efforts by the 
author of this report [5] have utilized simplified micromechanics techniques to analyze 
the nonlinear, rate dependent deformation of polymer matrix composites at relatively low 
strain rates. 
     The objective of the current paper is to simulate the strain rate dependent tensile 
deformation of a representative polymer matrix composite with varying fiber orientations 
at strain rates ranging from around 1×10–5/sec to approximately 400/sec.  An analytical 
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model will be presented in which state variable constitutive equations based on 
viscoplasticity theory are utilized to predict the strain rate dependent response of the 
polymer matrix, including a preliminary method of accounting for the effects of 
hydrostatic stresses.  The micromechanics techniques used to predict the effective 
mechanical and thermal response of the composite will be described.  In the 
micromechanics method presented here, the unit cell is divided into a number of 
horizontal slices, and uniform stress and uniform strain assumptions are then applied to 
each slice to obtain the effective stresses, elastic and thermal constants, and effective 
inelastic strains for each slice.  Laminate theory is then applied to obtain the effective 
properties and response for each lamina, and then applied again to obtain the effective 
response for the composite laminate.  Finally, verification studies will be discussed in 
which tensile stress-strain curves of a representative polymer matrix composite are 
generated analytically using the mathematical model, and the results will be compared to 
experimentally obtained values.  Furthermore, effective elastic and thermal constants will 
be computed for a second representative composite and the results will be compared to 
values obtained using finite element analyses. 
 
Polymer Constitutive Equations 
 
     Polymers are known to have a strain rate dependent deformation response that is 
nonlinear above about one or two percent strain.  For this study, the Ramaswamy-
Stouffer viscoplastic state variable model [6], which was originally developed to analyze 
the viscoplastic deformation of metals above one-half of the melting temperature, has 
been modified to simulate the rate dependent inelastic deformation of polymers.  There is 
some physical motivation in utilizing constitutive equations that were developed to model 
viscoplastic metals to analyze the deformation response of polymer matrix materials.  For 
example, the “yield stress” in polymers and the “saturation stress” in metals have both 
been defined as the stress level in a uniaxial tension test where the applied strain rate 
equals the inelastic strain rate [6,7].  In state variable constitutive equations, a single 
unified strain variable is defined to represent all inelastic strains.  Furthermore, there is no 
defined yield stress.  Inelastic strains are assumed to be present at all values of stress, 
only very small in the “elastic” range of deformation.  State variables, which evolve with 
stress and inelastic strain, are defined to represent the average effects of the deformation 
mechanisms. 
     Several limitations and assumptions have been specified in the development of the 
constitutive equations.  Temperature effects are neglected.  The nonlinear strain recovery 
observed in polymers on unloading is not simulated, and phenomena such as creep, 
relaxation and high cycle fatigue are not accounted for in the equations.   
     In the modified Ramaswamy-Stouffer model, the components of the inelastic strain 
rate tensor, I

ijε� , are defined as a function of the deviatoric stress components, sij, and the 

components of the tensorial internal stress state variable tensor Ωij in the form 
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where Do, Zo, and n are material constants.  Do is a material constant which represents the 
maximum inelastic strain rate, Zo is a material constant which represented the initial, 
isotropic “hardness” of the material before any load is applied and n is a material constant 
which controls the rate dependence of the deformation response. The term K2 is defined 
as follows 
 

 ( )( )ijijijij ssK Ω−Ω−=
2

1
2   (2) 

 
and represents the second invariant of the overstress tensor.  The elastic components of 
strain are added to the inelastic strain to obtain the total strain.  The following relation 
defines the internal stress state variable rate 
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I
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  (3)  

  
where q is a material constant that represents the “hardening” rate, Ωm is a material 
constant that represents the maximum value of the internal stress, and εe

I is the effective 
inelastic strain. The internal stress is assumed to be equal to zero when the material is in 
its virgin state. 
     The material constants that need to be determined include D0, n, Z0, Ωm, and q.  The 
procedure for determining the values of these constants is summarized here.  Further 
details can be found in Stouffer and Dame [6] and Goldberg [5].  The constants are 
determined using stress-strain curves obtained from a set of uniaxial constant strain rate 
tensile tests of the polymer matrix material.  Each test is conducted at a different total 
strain rate.  A basic assumption is that the constants determined from uniaxial tensile tests 
are valid under multiaxial stress conditions and can be used in Equation 1.  The value of 
D0 is currently assumed to be equal to a value of 104 times the maximum expected total 
strain rate, which correlates with the maximum possible inelastic strain rate.  To 
determine the values of n, Z0, and Ωm, Equation 1 is simplified into its uniaxial 
representation to model the results of the constant strain rate uniaxial tensile tests and 
rearranged into an appropriate form.  Data pairs of the total strain rate and saturation 
stress (yield stress) values from each of the tensile stress-strain curves are taken. Values 
for Ωm are estimated for the material, with initial estimates ranging from 50% to 75% of 
the highest saturation stress found to work well.  For each strain rate, the data values are 
substituted into the rearranged form of Equation 1, and represent a point on a master 
curve.  The number of points in the master curve equal the number of strain rates at 
which tensile tests were conducted.  A least squares regression analysis is then performed 
on the master curve to determine the required constants.  The value for Ωm is adjusted 
until an optimal fit to the data is obtained. 
     To determine the value for q for Equation 3, first the equation is converted into its 
uniaxial equivalent and integrated. At saturation (yield), the value of the internal stress is 
assumed to approach the maximum value, and the integrated equation is solved for q.  If 
the inelastic strain at saturation is found to vary with strain rate, the parameter q is 
computed at each strain rate and regression techniques are utilized to determine an 
expression for the variation of q.   
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     One key difference between the deformation response of polymers and the 
deformation response of metals is that the mean stress effects in polymers are significant, 
and need to be dealt with in a constitutive model.  Bordonaro [8] indicated a possible way 
of accounting for the effects of hydrostatic stresses in a state variable constitutive model 
was to modify the effective stress terms.  In this work, pressure dependence is included 
by multiplying the shear terms in the K2 invariant in Equation 2 by the correction factor 
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where σm is the mean stress, J2 is the second invariant of the deviatoric stress tensor, and 
β is a material constant.  The value of the parameter β is currently determined empirically 
by fitting data from composites with shear dominated fiber orientations, such as [±45°]s.  
Efforts are currently underway to account for the hydrostatic stress effects in a more 
systematic manner, based on using polymer tensile and shear data. 
 
Composite Micromechanical Model 
 
     Micromechanics techniques are used to predict the effective properties and 
deformation response of the individual plies in the composite laminate based on the 
constituent properties.  Laminate theory is then used to compute the effective 
deformation response of the entire composite.  The unit cell is defined to consist of a 
single fiber and its surrounding matrix.  Due to symmetry, only one-quarter of the unit 
cell was analyzed.  The composites are assumed to have a periodic, square fiber packing 
and a perfect interfacial bond is specified.  Classical laminate theory is assumed to apply 
to the composites considered for this study, and each lamina is considered to be in a state 
of plane stress.  In certain applications, the out-of-plane stresses in the lamina could be 
significant, in which case classical laminate theory would not apply.  However, in order 
to simplify the mathematics in the analysis, and since the plane stress assumption is 
commonly made in the analysis of composite laminates, for this study any out-of-plane 
effective stresses are neglected.  If these stresses are eventually determined to be 
significant, a three-dimensional laminate theory could be applied to allow for the 
presence of transverse pressures and transverse shear stresses.  The fibers are assumed to 
be transversely isotropic and linearly elastic with a circular cross-section.  The matrix is 
assumed to be isotropic, with a rate dependent, nonlinear deformation response computed 
using the equations described in the previous section.  A key assumption of this approach 
is that the in-situ matrix properties are equivalent to the bulk properties of the polymer.  
However, the advantage of using this type of methodology is that it is simpler to conduct 
experiments on the pure resin and to determine the material constants from the pure resin 
data as opposed to trying to back out the resin properties from composite test data.  
Furthermore, a key goal of this research is to provide a methodology that facilitates 
reducing the amount of testing of the composite that is required to obtain strain rate 
dependent material properties that can be input into a finite element code.  Conducting 
strain rate dependent tensile tests on the pure resin and using that data to predict the 
composite deformation response is also much simpler than conducting tests on the 
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composite.  However, if in comparing test data obtained from composite specimens to 
analytical predictions it appears that the bulk matrix properties do not accurately reflect 
the in-situ state of the matrix, the polymer properties can always be appropriately 
adjusted. 
     In previous work [5], the portion of the unit cell that was analyzed was divided into 
four rectangular subcells, one for the fiber and three matrix subcells, similar to Aboudi’s 
Method of Cells [9].  By applying uniform stress and uniform strain assumptions to the 
subcells within the unit cell, a system of ten coupled simultaneous equations resulted 
which were solved for the stresses in each subcell.  The effective elastic constants and 
inelastic strains for the composite lamina were also determined. 
     In order to obtain more accurate results, the ability to refine the unit cell to allow for  
a larger number of subcells is desirable.  However, by applying the approach used 
previously, solving a large number of simultaneous equations would be required to obtain 
the subcell stresses.  The number of equations would increase as the number of subcells 
increased. 
     However, by considering the approximations required for classical laminate theory, 
since each ply must be in a global state of plane stress one could assume that each row of 
subcells in the unit cell must be in a state of plane stress.  While the out-of-plane stresses 
could be nonzero in individual subcells, the effective volume average of the stresses for 
each row of subcells would equal zero.  If transverse pressures and transverse shear 
stresses are not neglected, the effective out-of-plane stresses in each row of subcells 
would be a non-zero constant value throughout the thickness of the unit cell.  However, 
for this study only in-plane stresses are assumed to be present.  By assuming a constant 
out-of-plane stress in each row of subcells in the unit cell model, the behavior of each 
row of subcells can be decoupled.  One can divide the unit cell up into an arbitrary 
number of horizontal slices (rows).  A schematic demonstrating the fiber substructuring is 
shown in Figure 1.  Uniform stress and uniform strain assumptions can then be applied to 
each slice to obtain the subslice (subcells within a slice) stresses, as well as the effective 
inelastic strains and effective elastic constants for the slice.  Laminate theory can then be 
used to obtain the effective elastic and thermal constants and effective inelastic strains for 
the composite lamina, and then applied again to obtain the effective elastic constants and 
force resultants due to inelastic strains for the laminate.  Similar approaches have been 
used by Whitney [10] and Greszczuk [11] to determine the elastic constants of polymer 
matrix composites.  Mital, Murthy and Chamis [12] applied a slicing approach to 
determine the elastic properties and deformation response of ceramic matrix composites. 
     The significance of this approach is that the stresses for each slice (both subslice and 
effective) can be determined independently, which significantly reduces the number of 
simultaneous equations that need to be solved.  Furthermore, no matter how many slices 
are included in the model, the size of the system of equations for each slice remains 
constant.  Therefore, instead of solving one large set of simultaneous equations, multiple 
small sets of equations can be solved, which reduces the complexity of the problem. 
 
Slicing Algorithm 
 
     The unit cell is divided up into several rectangular horizontal slices.  The portion of 
the unit cell that contains fiber and matrix is divided up into an odd number of slices of 
equal thickness.  The remaining matrix areas on the top and bottom of the unit cell are 
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contained in individual slices.  In Figure 1, the unit cell is divided up into five fiber slices, 
and the portion of the unit cell that is analyzed (analysis cell) is divided up into three 
fiber slices.  The unit cell is assumed to measure one unit in length by one unit in height, 
and the analysis cell is assumed to measure 0.5 units in length by 0.5 units in height.  The 
fiber slices are of equal thickness, except for the bottom slice in the analysis cell which is 
one-half as thick as the remaining fiber slices due to symmetry.  The slicing algorithm 
used is very similar to that used by Mital, et al. [12]. 
     To compute the fiber volume ratio and thickness ratio (the ratio of slice thickness to 
total analysis cell thickness) for each slice in the analysis cell, the following procedure is 
followed.  The first step is to compute the area of the cross-section of the fiber within 
each slice.  The overall diameter of the fiber (df) is related to the fiber volume fraction of 
the overall composite (Vf) through the following relationship 
 

 
π

f
f

V
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4
=  (5) 

 
and this term can be used along with the standard geometric definition of the radius of a 
circle to compute the horizontal coordinate of any point on the outer surface of the fiber 
in terms of the fiber volume fraction and the vertical coordinate.  The area of the portion 
of the fiber contained within each slice (Af

i) can computed by integrating the resulting 
expression between the vertical (z) coordinates of the top and bottom of slice “i” 
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which is also the equivalent area of the rectangular fiber slice in the analysis cell. 
     The fiber volume fraction of each slice composed of fiber and matrix is equal to the 
fiber area in each slice divided by the total slice area (the slice thickness multiplied by 
0.5).  The thickness ratio for each slice composed of both fiber and matrix is equal to the 
slice thickness divided by 0.5, the assumed total height of the analysis cell.  The fiber 
volume fraction of the top slice consisting of matrix only is equal to zero, and the 
thickness ratio of the top slice is equal to one minus the sum of the thickness ratio of the 
remaining slices. 
 
Slice Micromechanics Equations 
 
     The effective properties, effective inelastic strains and effective thermal strains of 
each slice are computed independently.  The responses of each slice are combined using 
laminate theory to obtain the effective response of the corresponding lamina.  Most of the 
slices are assumed to have two subslices, one subslice composed of fiber material and 
one subslice composed of matrix material.  The top slice is assumed to be composed of 
matrix material only.  The micromechanics equations are for those slices composed of 
both fiber and matrix material.  The stresses in the slices composed of pure matrix can be 
computed using the matrix elastic properties and inelastic constitutive equations.  The 
standard transversely isotropic compliance matrix (or isotropic in the case of the matrix) 
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is used to relate the local strains to the local stresses in the fiber and matrix.  Each slice is 
assumed to be in a state of plane stress on the global level, but out-of-plane normal 
stresses can exist in each subslice. 
     Along the fiber direction (direction 11), the strains are assumed to be uniform in each 
subslice, and the stresses are combined using volume averaging.  The in-plane transverse 
normal stresses (22 direction) and the in-plane shear stresses (12 direction) are assumed 
to be uniform in each subslice, and the strains are combined using volume averaging.  
The out-of-plane strains (33 direction) are assumed to be uniform in each subslice.  The 
volume average of the out-of-plane stresses in each subslice is assumed to be equal to 
zero, enforcing a plane stress condition on the global level for the slice.   
     The orthotropic compliance matrix is used to relate the strains (εij) to the stresses (σij) 
in each constituent, using the following relations   
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where α11, α22, and α33 are the coefficients of thermal expansion, ∆T is the change in 
temperature and εij

I are the inelastic strains.  Note that in these equations Sij represents the 
components of the compliance matrix, not the components of the deviatoric stress tensor 
sij as in the previous section.  Also note that engineering shear strains (γij) are used in the 
analysis. 
     The addition of the inelastic strain components to the standard orthotropic elastic 
constitutive law facilitates the incorporation of inelasticity into the constitutive relations.  
For the fiber, which is assumed to be linear elastic, these components are neglected.  For 
the fiber, which is transversely isotropic, S13 is set equal to S12 and S33 is set equal to S22.  
For the matrix material, which is assumed to be isotropic, S23 and S13 are set equal to S12, 
and S22 and S33 are set equal to S11.  Furthermore, α33 is set equal to α22 for the fiber and 
α33 and α22 are set equal to α11 for the matrix. 
     By combining the uniform stress and uniform strain assumptions with the constituent 
stress-strain relations, the following system of equations results 
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that can be solved for the unknown stresses in the subslices.  The total strains and 
subslice inelastic strains are considered to be the known values in solving this problem.  
The subscript “f” is used to denote fiber related properties, and the subscript “m” is used 
to denote matrix related properties.  Stresses and strains with no subscript are used to 
represent effective stresses and strains for the slice (not the composite ply or laminate).  
The symbol “Vf” is used here to represent the fiber volume ratio for the slice, computed 
using the methods discussed earlier, not the total fiber volume fraction for the composite.       
     By substituting the subslice stresses back into the equations defining the uniform 
stress assumptions, an expression relating the effective stresses to the effective strains in 
the slice is obtained 
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where [Qij] represents the effective plane stress stiffness matrix for the slice, {ei} 
represents the stress resultants due to inelastic strains and {ai} represents the stress 
resultants due to thermal strains.  To compute the effective inelastic strains and effective 
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thermal expansion coefficients for the slice, the {ei} and {ai} vectors are brought to the 
left hand side of Equation 15 and the expression is solved for the total strains.  The 
effective inelastic strains for the slice can be computed using the following expression 
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where [Sij] is the effective compliance matrix for the slice, and {εij

I} represents the 
effective inelastic strain vector for the slice.  Similarly, the effective thermal expansion 
coefficients for the slice can be computed using the following expression 
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where α11 and α22 are the effective thermal expansion coefficients for the slice. 
     To compute the effective stiffness matrix, effective thermal expansion coefficients and 
effective inelastic strains for the lamina (which are equivalent to the equivalent properties 
for the analysis cell) from the effective stiffness matrix, thermal expansion coefficients, 
and inelastic strains for each slice, the following procedure is used.  First, the in-plane 
strains for each slice are assumed to be constant and equal to the in-plane strains for the 
lamina.  The total in-plane stresses for the lamina are assumed to be equal to the volume 
average of the in-plane stresses for each slice, as follows 
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where Nf is the number of fiber slices in the analysis cell, {σij}l are the effective stresses 
in the lamina, hf

i represents the thickness ratio of each slice as defined earlier, and the 
summation is over all of the slices (i).        
     To compute the plane stress stiffness matrix and effective inelastic strains for the 
lamina, Equation 15 for the slice is rewritten as 
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where Equation 16 is applied to compute the {εij

I} vector from the {ei} vector and 
Equation 17 is applied to compute the thermal expansion coefficients from the ai vector.  
By substituting Equation 19 into Equation 18, the effective plane stress stiffness matrix 
for the lamina, [Qjk]l, is obtained as follows  
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where the summation is again over all of the slices.  Likewise, by following the same 
procedures used to go from Equation 15 to Equation 16, the following expression is 
obtained for computing the effective inelastic strains for the lamina 
 

 ∑
+

= 














































=
















1

1
12

22

11

66

2221

1211

66

2221

1211

12

22

11

00

0

0

00

0

0
fN

i

i
f

i

I

I

I

ill

I

I

I

h

Q

QQ

QQ

S

SS

SS

γ
ε
ε

γ
ε
ε

 (21) 

 
where {εij

I}l is the effective inelastic strain vector for the lamina and [Sij]l is the effective 
compliance matrix for the lamina.  A similar procedure is used to compute the effective 
thermal expansion coefficients for the lamina.  By applying laminate theory again, the 
effective response of the composite laminate can be computed as has been described in 
Goldberg [13]. 
 
Simulation of Strain Rate Dependent Tensile Deformation 
 
     To verify the micromechanics equations, a series of analyses have been carried out 
using a representative polymer matrix composite system that exhibits a strain rate 
dependent, nonlinear deformation response.  The material examined, supplied by Fiberite, 
Inc., consists of carbon IM7 fibers in a 977-2 toughened epoxy matrix.  Longitudinal 
tensile tests have been conducted on the neat resin and composite laminates with various 
fiber orientations at The Ohio State University.  Tests were conducted at strain rates of 
about 5×10–5/sec, about 1.0/sec and about 400–600/sec.  Dog-bone shaped specimens 
were used with a gage length of approximately 0.9525 cm.  The low strain rate testing 
was conducted using an Instron hydraulic testing machine.  The high strain rate tests were 
conducted using a tensile split Hopkinson bar apparatus. 
     The IM7/977-2 composite has a fiber volume ratio of 0.60.  The material properties 
used in this study for the IM7 fiber include a longitudinal modulus of 276 GPa, a 
transverse modulus of 12.4 GPa, a longitudinal Poisson’s ratio of 0.25, a transverse 
Poisson’s ratio of 0.25 and an in-plane shear modulus of 20.0 GPa.  The longitudinal 
modulus, longitudinal Poisson’s ratio and in-plane shear modulus are as given in Gates, 
et al. [14].  The transverse modulus of the fiber was reduced slightly from the value given 
in Gates, et al. [14] in order to provide a good correlation in the elastic range with data 
from [90°] specimens.  Since the transverse modulus given in Gates, et al.  [14] was also 
a correlated value, a variation of this sort was considered acceptable.  The value for the 
transverse Poisson’s ratio was taken from Murthy, et al. [15] based on representative 
carbon fiber data.  Temperature effects and processing related issues were not accounted 
for in the current analyses due to the lack of available data.  Temperature effects might be 
incorporated into the predictions in the future. 
     The material properties for the 977-2 resin were determined using the procedures 
described earlier.  Note that since this resin did not reach a “saturation” stress before 
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failure, appropriate values were extrapolated from the tensile data and used to obtain the 
material properties.  The value for the constant “β” required for the correction factor 
given in Equation 4 was determined to be strain rate dependent.  In addition, the material 
constant “q” from Equation 3 was found to be rate dependent for this material.  The 
elastic modulus for the matrix at high strain rates was found to be significantly higher 
than the modulus at the low and moderate strain rates.  The value of the constant “q” was 
found to be quite low at high strain rates.  This variation is most likely due to the fact that 
in metals, for which the polymer constitutive equations used here were originally 
developed, the elastic modulus is assumed not to vary with strain rate.  However, for the 
polymer examined here the modulus increased significantly at high strain rates.  This 
would lead to a significant increase in the inelastic strain at saturation compared to the 
lower strain rates, which would lead to a reduction in the value of “q”.  The values of the 
material constants for the 977-2 resin include an elastic modulus of 3.52 GPa for the low 
and moderate strain rates and 13.8 GPa for the high strain rate, a Poisson’s ratio of 0.40, 
and inelastic constants as follows: Do=1×106, n=0.42, Zo=2180 MPa, q ranging from 85 
for the low strain rate, 160 for the moderate strain rate and 20 for the high strain rate, 
Ωm=76 MPa, and β ranging from 1.05 for the low strain rate, 0.90 for the moderate strain 
rate and 0.50 for the high strain rate. 
      Experimental and computed longitudinal tensile stress-strain curves for two laminate 
configurations ([45°] and  [±45°]s) of the IM7/977-2 material are shown in Figure 2 and 
Figure 3.  These laminate configurations were chosen due the pronounced nonlinearity 
and strain rate dependence observed in the experimental results.  Three fiber slices were 
used in the analysis cell for the computations.  This value was found to yield sufficiently 
converged answers.  In Figure 2, results for the [45°] laminates at strain rates of  
4.75×10–5/sec, 1.2/sec and 405/sec are shown.   In Figure 3, results for the [±45°]s 
laminates at strain rates of 9×10–5/sec, 2.1/sec and 604/sec are shown.  As can be seen in 
the figures, the analytical model captures the rate dependence and nonlinearity of the 
experimental stress-strain curves.  Furthermore, the comparison between the 
experimental and computed results is quite good. 
 
Prediction of Effective Elastic and Thermal Constants 
 
     To validate the ability of the composite micromechanics to predict the effective elastic 
and thermal properties of a polymer matrix composite, the initial, elastic, room 
temperature material properties of a representative carbon fiber reinforced polymer 
matrix composite with a [0°] fiber orientation were computed.  The results are compared 
to values obtained through finite element analyses by Hyer [16].  For the carbon fiber, the 
longitudinal modulus is taken to be 233 GPa, the transverse modulus is taken to be 
23.1 GPa, the longitudinal Poisson’s ratio is 0.20, the transverse Poisson’s ratio is 0.40, 
the in-plane shear modulus is 8.96 GPa, the longitudinal coefficient of thermal expansion 
is –0.540×10–6/K, and the transverse coefficient of thermal expansion is 10.10×10–6/K.  
For the matrix, the modulus is 4.62 GPa, the Poisson’s ratio is 0.36 and the coefficient of 
thermal expansion is 41.4×10–6/K.  The fiber volume ratio was set to 0.60.  All of the 
properties are as given by Hyer [16].  For the analysis, three fiber slices were once again 
used in the analysis cell. 
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     The predicted values of the longitudinal (E11) and transverse (E22) modulus, 
longitudinal Poisson’s ratio (ν12), in-plane shear modulus (G12), and longitudinal (α11) 
and transverse (α22) thermal expansion coefficients are listed in Table 1 along with the 
values computed using finite element analyses [16].  For the thermal expansion 
coefficients, values computed using a micromechanics approach based on energy 
methods [1] are also listed.  As can be seen in the table, the elastic properties computed 
using the methodology presented in this paper match the finite element results quite well.  
The predicted thermal expansion coefficients differ slightly from the finite element 
results.  However, the current methodology provides an improved prediction in the 
longitudinal direction when compared to the energy based method, and an equivalent 
prediction in the transverse direction.  Overall, the current methodology provides good 
predictions of effective elastic and thermal properties of polymer matrix composites. 
 

Table 1- Prediction of Effective Material Properties 
 

Property Finite Element Energy 
Method 

Predicted 

E11 (GPa) 141.7 ---------- 141.7 
E22 (GPa) 12.4 ---------- 12.6 
ν12 0.259 ---------- 0.266 
G12 (GPa) 4.05 ---------- 3.90 
α11 (/K) 0.088 0.007 0.112 
α22 (/K) 26.4 28.5 29.1 

 
Conclusions 
 
     An analytical model has been developed to analyze the strain rate dependent, 
nonlinear deformation response of polymer matrix composites.  State variable 
constitutive equations based on the Ramaswamy-Stouffer model are used to compute the 
deformation response of the polymer matrix.  A mechanics of materials based 
micromechanics method in which the unit cell was divided into several slices is used to 
predict the effective elastic and thermal properties and the effective deformation of the 
composite.  The stress strain curves computed using the analytical model compared 
favorably to the experimental results across the entire range of strain rates, indicating that 
the analysis is correctly capturing the important features of the deformation response.  
Effective elastic and thermal properties were also correctly predicted using the analytical 
model.  The analytical methods described in this study can be used in explicit finite 
element codes to provide a more realistic analysis of deformation during blade-out events 
for fan containment systems composed of composite materials. 
     Future efforts will concentrate on improving the methodology used to account for 
mean stress effects in the polymer constitutive equations.  The ability to account for 
thermal effects will also be added to the constitutive equations.  The micromechanics will 
be modified to allow for the analysis of woven and braided composites. 
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Figure 1 - Schematic showing relationship between unit cell and slices for 
micromechanics. 

  

 

Figure 2 - Experimental and computed results for IM7/977-2 [45°] laminates at strain 
rates of 4.75×10–5/sec, 1.2/sec and 405/sec. 
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Figure 3 - Experimental and computed results for IM7/977-2 [±45°]s laminates at strain 
rates of  9×10–5/sec, 2.1/sec and 604/sec 
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